
Deductive Verification of Railway Operations

Eduard Kamburjan and Reiner Hähnle
15. November 2017

Technische Universität Darmstadt, Software Engineering Group

Big Picture

Railway Engineering as Software Engineering
Apply tools for distributed software to railway operation procedures.

Infrastructure = Data Structure
Operational Rules = Programs
Safety Property = Logical Formula

Focus: Communication and PZB

2/33

Deductive Verification

Definition
“... methods that use an expressive (at least first-order) logic to

state that a given target system is correct with respect to some
property. Logical reasoning (deduction) is then used to prove validity
of such a statement ...”[Beckert and Hähnle 2014]

Program Logics and Traces
First Order Program Logic and specification of traces.

3/33

Modeling Railway Operations vs. Modeling Railway Systems

Approach

• Model railway systems as a distributed software system
• Modeling not on implementation level
• Instead: Information flow as described in rule books
• Verify safety properties for all well-formed infrastructures

4/33

Modeling Language

Abstract Behavioral Specification Language

• Based on actors and cooperative scheduling
• Executable modeling language
• Multiple static analyses available

1 class Station implements StationInterface{

2 StationInterface next = ...

3 Unit schedule(Event ev){

4 Fut<Int> f = next!request(train(ev));

5 this.id = id(ev);

6 f.get;
7 Int i = await next!request(train(ev));

8 }

9 }

5/33

Events

A trace is a sequence of events which encodes visible actions

• Invocation (invocEv) - Invocation Reaction (invocREv)
• Suspension (awaitEv) - Reactivation (reacEv)
• Completion (futEv) - Completion Reaction (futREv)

Concurrency system encoded as axioms: e.g.,

• each invocation reaction is predated by invocation

6/33

ABS Program Logic

• Connects programs to specifications of state

i ≥ 0 → [i = i + 1]i > 0

• Describes possible histories of events

[o!m();π]ϕ⇝
{history := history ◦ ⟨InvocEv(X , o, f , m, ϵ)⟩}[π]ϕ

7/33

ABS Program Logic

• Connects programs to specifications of state

i ≥ 0 → [i = i + 1]i > 0

• Describes possible histories of events

[o!m();π]ϕ⇝
{history := history ◦ ⟨InvocEv(X , o, f , m, ϵ)⟩}[π]ϕ

7/33

Modeling

Overview

Layers seperate topological aspects from information transmission

Switch

PoV
Pre Signal
Magnet Magnet

Main Signal
Magnet PoD

PoD

Logical Signal

Topology
Layer

Physical Element
Layer

Logical Element
Layer

 PoV = Point of latest possible visiblity
 PoD = Point of danger

8/33

Point of Information Flow (PIF)

Infrastructure
Infrastructure is a graph model, where each node has at
least one point of information flow.

• Information flow from infrastructure to train
• signals, magnets,. . .

• Information flow from train to infrastructure
• axle counter, balises,. . .

• Indirect information flow
• End of switch, crossing,. . .

• Multiple PIFs per node possible

9/33

Grouping PIFs in the Graph

Infrastructure
Multiple points of information flow form a logical object,
each logical object is assigned to a station

Logical Signal
main signal + pre signal + point of visibility + three
magnets + danger point (+ additional signals + . . .)

10/33

Trains

11/33

Code Example

1 class MainSignal(Node n, Edge track, Signal s)

implements MainSignal {

2 SignalState state = STOP;

3 Info triggerFront(Train train, Edge e){

4 if (this.track == e){

5 this.s.setObserver(null);
6 return Info(this.state);

7 }

8 return NoInfo;

9 }

10 Info triggerBack(Train train, Edge e){

11 return NoInfo;

12 }

13 Unit setState(SignalState newState){...}

14 }

12/33

Communication

Three communication protocols among stations

• Change of permit - prevents head-on runs
• One token per line, only station with token can let trains drive
• Here “Erlaubnisholtaste”: A requires token from B
• A only requests when all trains from B arrived
• B always releases, except when it is about to use token
• Other protocol verified in [FTSCS 2016].

• “Zugmeldebetrieb” - prevents deadlocks
• Each train is offered and accepted
• On departure, train is announced

• Block signaling - guarantees free block
• After setting a signal to “Go”
• Next signal must block back before “Go” can be set again
• Blocking back is caused by train passage

13/33

Communication

Three communication protocols among stations

• Change of permit - prevents head-on runs
• One token per line, only station with token can let trains drive
• Here “Erlaubnisholtaste”: A requires token from B
• A only requests when all trains from B arrived
• B always releases, except when it is about to use token
• Other protocol verified in [FTSCS 2016].

• “Zugmeldebetrieb” - prevents deadlocks
• Each train is offered and accepted
• On departure, train is announced

• Block signaling - guarantees free block
• After setting a signal to “Go”
• Next signal must block back before “Go” can be set again
• Blocking back is caused by train passage

13/33

Communication

Three communication protocols among stations

• Change of permit - prevents head-on runs
• One token per line, only station with token can let trains drive
• Here “Erlaubnisholtaste”: A requires token from B
• A only requests when all trains from B arrived
• B always releases, except when it is about to use token
• Other protocol verified in [FTSCS 2016].

• “Zugmeldebetrieb” - prevents deadlocks
• Each train is offered and accepted
• On departure, train is announced

• Block signaling - guarantees free block
• After setting a signal to “Go”
• Next signal must block back before “Go” can be set again
• Blocking back is caused by train passage

13/33

Code Example

Part of the method that controls departure of trains
1 while (!permission[line]) { //controls departure
2 await expectIn[line] == Nil
3 lockedLine[line] = True;
4 Bool res = await target!reqPermit(this, line);
5 if(res) permission[line] = True;
6 lockedLine[line] = False;
7 }
8 permissionLocked[line] = True;

Part of the method that accepts train
1 await !lockedLine[line] && acquireHalt(line, trackList) != null;

Part of reqPermit
1 if(permission[line] && !permissionLocked[line]){
2 permission[line] = False;
3 return True;
4 }

14/33

Execution

15/33

Code Example

1 productline Examples;

2 features ETCS1Demo, ETCS2Demo, ETCS3Demo, ...;

3

4 delta ETCS1Ex after ETCSRBC when ETCS1Demo;

5 delta ETCSRBC after ETCSCore

6 when ETCS1Demo || ETCS2Demo || ETCS3Demo;

7 delta ETCSCore

8 when ETCS1Demo || ETCS2Demo || ETCS3Demo;

9

10 product ETCS1 (ETCS1Demo);

11 product ETCS2 (ETCS2Demo);

12 product ETCS3 (ETCS3Demo);

13

14 root Scenarios { group oneof { ETCS1Demo,

ETCS2Demo, ETCS3Demo } }

16/33

Notion of Safety

Scope

Terminology
• Edge between two PIFs : Track
• Tracks between two signals: Section
• Sections between two stations: Line
• In presentation: between two stations there is only one line

Assumptions
• German rules differ for driving inside and outside of stations
• We only consider driving outside
• No level crossings
• We ignore faults and assume that infrastructure is well-formed

17/33

Scope

Terminology
• Edge between two PIFs : Track
• Tracks between two signals: Section
• Sections between two stations: Line
• In presentation: between two stations there is only one line

Assumptions
• German rules differ for driving inside and outside of stations
• We only consider driving outside
• No level crossings
• We ignore faults and assume that infrastructure is well-formed

17/33

Well-Formedness

Coherent Encoding
• Relations between elements is coherent, e.g.,
• If a signal is marked as covering section S, then it exists

Correct Encoding
• Designed according to Ril. 819, e.g.,
• Every mainsignal has a presignal

Coherence and Correctness
• Coherence connects the proof to reality
• Correctness connects the safety theorem to reality

18/33

Safety on the Line

Theorem (Departure Safety)
If an exit or block signal to section S of line L is set to “Go”:

1. L has no trains driving in the opposite direction
2. S is free from trains going in the same direction

19/33

Proof

Methodology

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

Reformulate/Connect
Formalize

Split

20/33

Lemma: Permission change (1) – Informal/global state

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

“If station A acquires the token for line L from station B,
then there is no train on L towards A.”

21/33

Lemma: Permission change (2) – Informal/global history

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

“If station A has an completion reaction event for
B.reqPermit and reads True, then at this moment A
expects no trains on L.”

22/33

Lemma: Permission change (3) – Formal/global history

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

Lemma
The following formula holds for all generated histories with a well-formed
infrastructure. Let A be a station and L a line with section being the first
section of L from A and A.other(section) the last.

∀i , f . h[i] = futREv(A,rqPerm, f , [True, section]) →
σ[i](A) |= expectIn(A.other(section)) = Nil

23/33

Lemma: Permission change (4)

We identify section and A.other(section) with line

1 while (!permission[line]) { //in method run
2 await expectIn[line] == Nil
3 lockedLine[line] = True;
4 Bool res = await target!reqPermit(this, line);
5 if(res) permission[line] = True;
6 lockedLine[line] = False;
7 }
8 permissionLocked[line] = True;

1 Unit offer(Train train, Line line){
2 await !lockedLine[line] && acquireHalt(line, trackList) != null;
3 expectIn = [train]::expectIn;
4 }

24/33

Lemma: Permission change (5) – Proof Outline

State

Event

x

ex
pe

ct
In

[li
ne

] =
Ni

l

ex
pe

ct
In

[li
ne

] =
Ni

l?

re
ac

Ev
aw

ai
t

ex
pe

ct
In

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (5) – Proof Outline

State

Event

x x x

ex
pe

ct
In

[li
ne

] =
Ni

l

ex
pe

ct
In

[li
ne

] =
Ni

l?

re
ac

Ev
aw

ai
t

ex
pe

ct
In

aw
ai

tE
v

aw
ai

t
re

qP
er

m
it

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (5) – Proof Outline

State

Event

x x x

ex
pe

ct
In

[li
ne

] =
Ni

l
lo

ck
ed

[li
ne

]

ex
pe

ct
In

[li
ne

] =
Ni

l?

re
ac

Ev
aw

ai
t

ex
pe

ct
In

aw
ai

tE
v

aw
ai

t
re

qP
er

m
it

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (5) – Proof Outline

State

Event

x x x x x

in
vo

cR
Ev

off
er

fu
tE

v
off

er
!lo

ck
ed

[li
ne

]
ex

pe
ct

In
[li

ne
] !

=
Ni

l

ex
pe

ct
In

[li
ne

] =
Ni

l
lo

ck
ed

[li
ne

]

ex
pe

ct
In

[li
ne

] =
Ni

l?

re
ac

Ev
aw

ai
t

ex
pe

ct
In

aw
ai

tE
v

aw
ai

t
re

qP
er

m
it

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (5) – Proof Outline

State

Event

x x x x x x x

in
vo

cR
Ev

off
er

fu
tE

v
off

er
!lo

ck
ed

[li
ne

]
ex

pe
ct

In
[li

ne
] !

=
Ni

l

aw
ai

tE
v

ru
n

!lo
ck

ed
[li

ne
]

ex
pe

ct
In

[li
ne

] =
Ni

l
lo

ck
ed

[li
ne

]

ex
pe

ct
In

[li
ne

] =
Ni

l?

re
ac

Ev
aw

ai
t

ex
pe

ct
In

aw
ai

tE
v

aw
ai

t
re

qP
er

m
it

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (5) – Proof Outline

State

Event

x x x x x

in
vo

cR
Ev

off
er

fu
tE

v
off

er
!lo

ck
ed

[li
ne

]
ex

pe
ct

In
[li

ne
] !

=
Ni

l

ex
pe

ct
In

[li
ne

] =
Ni

l
lo

ck
ed

[li
ne

]

ex
pe

ct
In

[li
ne

] =
Ni

l?

re
ac

Ev
aw

ai
t

ex
pe

ct
In

aw
ai

tE
v

aw
ai

t
re

qP
er

m
it

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (5) – Proof Outline

State

Event

x x x x

in
vo

cR
Ev

off
er

ex
pe

ct
In

[li
ne

] =
Ni

l
lo

ck
ed

[li
ne

]

ex
pe

ct
In

[li
ne

] =
Ni

l

re
ac

Ev
aw

ai
t

ex
pe

ct
In

aw
ai

tE
v

aw
ai

t
re

qP
er

m
it

re
ac

Ev
aw

ai
t

re
qP

er
m

it

25/33

Lemma: Permission change (6) – Formal/local history

• All steps are formal, most are easily verified
• To connect history and state, we can state a local invariant

∀Train T . ∀ Line line.
last(h) = futEv(self, offer, f , [T , line]) →

self.lockedLine[line] = False

• Verified with the KeY-ABS theorem prover
• Use similar argument on permissionLocked to establish

that a train only leaves when the station has the permission

26/33

Lemma: Train Involvement (1)

Well-formedness assumption: At t = 0, all trains are in stations

27/33

Lemma: Train Involvement (1)

Well-formedness assumption: At t = 0, all trains are in stations

27/33

Lemma: Train Involvement (2)

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

1) “If a non-entry signal S is set to “Go”, then the
covered section is free of trains going away from it.”

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

2) “If a signal S is set to “Go” twice, then a train
triggered the point of danger of the next signal at some
time in between.”

28/33

Lemma: Train Involvement (3)

Formalism Scale
informal global state
informal global history
ABS Program Logic global history
ABS Program Logic local history

Lemma
The following formula holds for all histories generated by the model in with
a well-formed infrastructure. Let A be a station and S a signal.

∀i .
(

h[i] = invocREv(A, S,setGo, f , []) →

∀j .
(
j < i ∧ h[j] = invocREv(A, S,setGo, f ′, []) →
∃ PoD P.∃k. j < k < i∧

h[k] = invocREv(P,next(S.covers),trigger, f ′′, [])
))

29/33

Lemma: Train Involvement (4) – Proof Outline

State

Event

x x x

fu
tE

v
se

tG
o

fu
tE

v
se

tG
o

lo
ck

ed
=

Tr
ue

in
vo

cE
v

se
tG

o
lo

ck
ed

=
Fa

lse

30/33

Lemma: Train Involvement (4) – Proof Outline

State

Event

x x x x x

fu
tE

v
se

tG
o

fu
tE

v
se

tG
o

lo
ck

ed
=

Tr
ue

in
vo

cE
v

se
tG

o
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

ba
ck

lo
ck

fu
tE

v
ba

ck
lo

ck
lo

ck
ed

=
Fa

lse

30/33

Lemma: Train Involvement (4) – Proof Outline

State

Event

x x x x x x x

fu
tE

v
se

tG
o

fu
tE

v
se

tG
o

lo
ck

ed
=

Tr
ue

in
vo

cE
v

se
tG

o
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

ba
ck

lo
ck

fu
tE

v
ba

ck
lo

ck
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

tri
gg

er
in

vo
cE

v
ba

ck
lo

ck

30/33

Lemma: Train Involvement (4) – Proof Outline

State

Event

x x x x x x x

fu
tE

v
se

tG
o

fu
tE

v
se

tG
o

lo
ck

ed
=

Tr
ue

in
vo

cE
v

se
tG

o
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

ba
ck

lo
ck

fu
tE

v
ba

ck
lo

ck
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

tri
gg

er
in

vo
cE

v
ba

ck
lo

ck

30/33

Lemma: Train Involvement (4) – Proof Outline

State

Event

x x x x x x x

!

fu
tE

v
se

tG
o

fu
tE

v
se

tG
o

lo
ck

ed
=

Tr
ue

in
vo

cE
v

se
tG

o
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

ba
ck

lo
ck

fu
tE

v
ba

ck
lo

ck
lo

ck
ed

=
Fa

lse

in
vo

cR
Ev

tri
gg

er
in

vo
cE

v
ba

ck
lo

ck

30/33

Theorem

Theorem (Departure Safety)
If an exit or block signal to section S of line L is set to “Go”:

1. L has no trains driving in the opposite direction
2. S is free from trains going in the same direction

• Additionally to Lemmas, use of well-formedness is needed
• Result holds for any well-formed infrastructure

31/33

Conclusion

Aspects of Active Objects and Deductive Verification

+ Verification not bound to concrete infrastructure
+ Verification does not bound size of infrastructure
+ Combines interaction, simulation and formal analysis
- Not fully automatic

32/33

Conclusion

Summary

• Deductive Verification allows verification of procedures

• Split safety and well-formedness, needs no concrete infrastructure

• Tools for distributed software generalize to railway operations

Future Work

• Modeling of all relevant rulebooks and infrastructure elements
• Level crossings, special signals
• ETCS L2+3

• Safety proofs in presence of faults and inside of stations

• Application of further tools (e.g., deadlock analysis)

Thank you

33/33

Conclusion

Summary

• Deductive Verification allows verification of procedures

• Split safety and well-formedness, needs no concrete infrastructure

• Tools for distributed software generalize to railway operations

Future Work

• Modeling of all relevant rulebooks and infrastructure elements
• Level crossings, special signals
• ETCS L2+3

• Safety proofs in presence of faults and inside of stations

• Application of further tools (e.g., deadlock analysis)

Thank you
33/33

	Modeling Language
	Modeling
	Notion of Safety
	Proof
	Conclusion

